[meteorite-list] Scientists Take a Leap Forward in Understanding Processes that Shape Martian Surface

From: Ron Baalke <baalke_at_meteoritecentral.com>
Date: Wed, 24 Sep 2008 14:15:38 -0700 (PDT)
Message-ID: <200809242115.OAA21204_at_zagami.jpl.nasa.gov>

Scientists take a leap forward in understanding processes that shape
Martian surface

Thaindian News
September 24, 2008

Berlin, September 24 (ANI): The High Resolution Imaging Science
Experiment (HiRISE), carried by NASAs Mars Reconnaissance Orbiter is
helping scientists make leaps forward in understanding both the ongoing
and ancient processes that shaped the surface of Mars.

A study of the nature and distribution of ancient megabreccia, led by
Professor Alfred McEwen, HiRISEs Principal Investigator, suggests that
this bedrock was formed during the late heavy bombardment period.

Megabreccia consists of angular, randomly-orientated blocks that formed
suddenly in energetic events such as meteorite impacts. It is thought to
contain fragments of the oldest and deepest bedrock exposed on the
surface of Mars.

According to McEwen, We think that the megabreccia was formed during a
period of heightened meteorite activity about 3.9 billion years ago.
This is around the time life appears to have begun on Earth, but we have
very little record of that era in our terrestrial geology because
ancient rocks are heavily metamorphosed.

Mars preserves a much better record of the heavy bombardment and, unlike
the dry lunar surface, it shows the environmental effects in a
water-rich crust, he added.

The HiRISE team has identified megabreccia in more than 50 locations
consistent with the most ancient terrains on Mars. These include the
central uplifts of large craters and deep exposures such as the floor of
parts of Valles Marineris.

Well-exposed rock outcrops are needed to identify megabreccia, in
particular from the diversity of colours and textures indicating diverse
rock types.

Megabreccia contains rock fragments from the earliest geological period
on Mars, the Noachian era, which is more than 3.8 billion years ago.

The megabreccia blocks vary in size from relatively small (1-5 metres)
to larger than 10 metres in diameter.

The small blocks were probably formed by post Noachian cratering,
particularly when found in material filling crater floors. The large
blocks are only found in locations consistent with hard, deep bedrock,
such as the central uplifts.

McEwen suggests that the blocks are largely cemented by melt from
impacts and hydrothermal alteration.

We are in the midst of a paradigm shift in understanding the Noachian
crust of Mars, thanks to the high-resolution data from the Mars Express
and MRO missions, said McEwen.

The spectrometers on these missions found evidence of alteration due to
water in the bedrock in many, if not most Noachian aged places. However,
the younger Noachian era may have been relatively dry, so we may need to
study the oldest outcrops of megabreccia to understand this era, he added.

McEwen will also be presenting results of processes that may be shaping
the surface of Mars today.
Received on Wed 24 Sep 2008 05:15:38 PM PDT

Help support this free mailing list:

Yahoo MyWeb